稳健,是 Gate 持续增长的核心动力。
真正的成长,不是顺风顺水,而是在市场低迷时依然坚定前行。我们或许能预判牛熊市的大致节奏,但绝无法精准预测它们何时到来。特别是在熊市周期,才真正考验一家交易所的实力。
Gate 今天发布了2025年第二季度的报告。作为内部人,看到这些数据我也挺惊喜的——用户规模突破3000万,现货交易量逆势环比增长14%,成为前十交易所中唯一实现双位数增长的平台,并且登顶全球第二大交易所;合约交易量屡创新高,全球化战略稳步推进。
更重要的是,稳健并不等于守成,而是在面临严峻市场的同时,还能持续创造新的增长空间。
欢迎阅读完整报告:https://www.gate.com/zh/announcements/article/46117
阿里大模型又开源!能读图会识物,基于通义千问7B打造,可商用
来源:量子位
继通义千问-7B(Qwen-7B)之后,阿里云又推出了大规模视觉语言模型Qwen-VL,并且一上线就直接开源。
举个🌰,我们输入一张阿尼亚的图片,通过问答的形式,Qwen-VL-Chat既能概括图片内容,也能定位到图片中的阿尼亚。
首个支持中文开放域定位的通用模型
先来整体看一下Qwen-VL系列模型的特点:
按场景来说,Qwen-VL可以用于知识问答、图像问答、文档问答、细粒度视觉定位等场景。
比如,有一位看不懂中文的外国友人去医院看病,对着导览图一个头两个大,不知道怎么去往对应科室,就可以直接把图和问题丢给Qwen-VL,让它根据图片信息担当翻译。
视觉定位能力方面,即使图片非常复杂人物繁多,Qwen-VL也能精准地根据要求找出绿巨人和蜘蛛侠。
研究人员在四大类多模态任务(Zero-shot Caption/VQA/DocVQA/Grounding)的标准英文测评中测试了Qwen-VL。
另外,研究人员构建了一套基于GPT-4打分机制的测试集TouchStone。
如果你对Qwen-VL感兴趣,现在在魔搭社区和huggingface上都有demo可以直接试玩,链接文末奉上~
Qwen-VL支持研究人员和开发者进行二次开发,也允许商用,不过需要注意的是,商用的话需要先填写问卷申请。
项目链接:
-Chat
论文地址: